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A recently develped transonic small-disturbance model is used to analyze the interactions

of random disturbances with a weak shock. The model equation has an extended form of

the classic small-disturbance equation for unsteady transonic aerodynamics. It shows that

diffraction effects, nonlinear steepening effects, focusing and caustic effects and random

induced vorticity fluctuations interact simultaneously to determine the development of the

shock wave in space and time and the pressure field behind it. A finite-difference

algorithm to solve the mixed-type elliptic hyperbolic flows around the shock wave is

presented. Numerical calculations of shock wave interactions with various deterministic

vorticity and temperature disturbances result in complicate shock wave structures and

describe peaked as well as rounded pressure signatures behind the shock front, as were

recorded in experiments of sonic booms running through atmospheric turbulence.

INTRODUCTION

The review of various experimental and theoretical investigations of the interaction of

shock waves and specifically sonic booms with free stream vortical or turbulent flows shows

(Rusak and Cole 1) that this complex nonlinear interaction is still an open problem.

Specifically, the improved simulation of sonic boom propagation through the real

atmosphere requires a better understanding of the interaction of weak shocks with vortical

perturbations and turbulence.

Analysis of experimental data and theoretical approaches shows that in the case of

the sonic boom, the shock waves near the ground are very weak, but still stronger than any

acoustic wave. Also, flow fluctuations due to the atmospheric turbulence or vortical shear

flows can become comparable to the shock weak strength such that locally the shock

strength can be either strongly reduced or magnified and the shock wave front can be

distorted significantly. Therefore, linearized acoustics and its second-order scattering
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problem,or first-order linear theoriesof shock-vorticity interaction do not represent

correctly the developmentof the weak shockand the pressurefield behind it. However, in

a coordinate system moving with the basic weak shock, the problem may fit the transonic

framework.

In a recent paper, Rusak and Cole_ have presented a new extended transonic

small-disturbance model to describe the interactions of random fluctuations with a weak

shock wave. The model equation also has an extended form of the classic nonlinear

acoustics equation that describes the propagation of sound beams with narrow angular

spectrura (KKZ equation) _-3 and is similar to the model equation of Pierce 4. The model

shows that diffraction effects, nonlinear steepening effects, focusing and caustic effects and

random induced vorticity fluctuations interact simultaneously to determine the

development of the shock wave in space and time and the pressure field behind it.

This paper summarizes the theory of Rusak and Cole I. A finite-difference algorithm

to solve the mixed-type elliptic hyperbolic flows around the shock wave is also presented.

Numerical calculations of weak shock wave interactions with deterministic vorticity and

temperature disturbances describe both peaked or rounded pressure signatures as were

recorded in experiments of sonic booms running through atmospheric turbulence 5-10.

A TRANSONIC SMALL DISTURBANCE MODEL

The analysis of the linearized problem of the interaction of a weak shock with small

disturbances shows 1 that it is an invalid approach when the flow perturbations are of the

order of the shock strength. Therefore, a different approach has been developed to study

the interaction of weak shocks with comparable random fluctuations in the flow (Rusak

and Cole)l. In a coordinate system moving with a basic given weak shock, the problem

may fit the framework of transonic theory. A transonic small-disturbance model has been

developed to analyze the flow across a basic weak shock running in the (-x) direction.

A coordinate system attached to the basic shock is considered. The velocity vector (V),

pressure (P), density (p) and vorticity (w) are described every where in the flow by:
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V=U_{i(I~ + e2/3u+ eul+ e4/3u2+ "")

+ j + + ...) + k + + ...)}

P = Poo (1 + e2/3p + Epl + e4/3 p_ + "..)

(i)

p = p= (1 + e21_p + epl + e413 P2 + "" ")

W = e2/3(jU}y + kwz) +e (iWxl-{- jWyl + kwzl) + "'"

where Uoo = a=(1 + K/2 e_./3) is the speed of the basic shock (K > 0) and a=, Poo, P= are

the speed of sound, pressure and density of the unperturbed flow ahead of the shock. (e213)

represents the scale of strength of the basic weak shock where e < < 1. A rescaling of the

x-coordinate and time (t) has also been considered: x* = x/ell 3 and t* = ta=ell 3, such

that each of the terms in (1) is a function of (x*, y, z, t*). The rescaling in x means a

stretching of the picture of the flow around the basic shock in order to capture the basic

nonlinear effects that occur in the flow across the shock. The rescaling in time accounts for

low-frequency unsteady perturbations in the flow. The constant K reflects that the speed

of the basic shock wave is slightly higher than the speed of sound ahead of the shock. The

substitution of Eqs. (1) into the continuity, momentum and energy equations results in

(Rusak and Cole1):

u + p = f(y,z,t*) (2a)

-_u + p = g(y,z,t*) (2b)

(2c)

o_u o'Nvl l_z (2d)

(2e)
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where f and g are random induced fluctuations due to the free turbulence. The function g

is related to the vorticity fluctuations in the flow and the function f is due to temperature

or speed of sound fluctuations. Equations (2) show that the axial perturbation (u),

pressure perturbation (p) and density perturbation (p), that are of the order of the shock

strength (c2/3), interact with the transverse velocity perturbations vl and wl, that are of a

smaller scale (e).

The substitution of u = g/7 + u in (2c), (2d) and (2e) results in a problem for solving

a velocity potential function ¢(x*, y, z, t*) where:

u= , vl= , wl= , p=-? 3a

1 _. (3b)2¢x.t, + [K + _+f+ (7 + 1)Cx,] Cx.x.- (¢yy + ¢,.,)- 7

In a conservative form Eq. (3b) is given by:

l g] + [(K+ g/7+ f)Cx.+ (7+ 1)Cx2./2]x ,-2 Cx* + _ t* (¢y)y-(¢z)z= 0. (3c)

The exact shock jump conditions (Ref. 11) must be satisfied along any shock surface

x* - h(y, z, t*) = 0 that may appear in the solution. To the leading orders, they result in:

[f]= o, [g]= o,

Oh
+ 0, + 0

where [a] represents the jump across the shock property a, [a] = 7B -- aA.

(4a)

=0, (4b)

(4c)

Equations (4a)

show that to the leading order there is no jump in entropy across the shock, IS] = 0.

Equations (1) and (2) also show that the local Mach number M t at any point in the flow is

given by:
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2
Mr-l= e2!3u*, u*- + + + + (5)

The flow is locally supersonic when (7 + 1) Cx* + K + f + g/7 > 0, sonic when

(7+ 1)¢x.+g+f+g/7=0, andsubsonicwhen(7+ 1)¢x,+g+f+g/7<0.

Equations (3) and (4) are an extended version of the classic small-disturbance equation for

unsteady transonic aerodynamics (Cole and Cook12). The changes are due to the random

terms g and f. Starting from given functions for f and g and initial conditions that describe

a given basic shock, Eqs. (3) and (4) can be integrated in space and time to describe the

development of the shock wave and pressure field behind it.

An alternative approach has also been found by taking an x*-derivative of (2c) and

using Eq. (2a). The pressure perturbation (p) satisfies the equation:

O K + f+ g/7_ (6)

Equation (6) is an extended version of the classic KKZ equation that describes the

propagation of nonlinear sound beams with narrow angular spectrum in an inviscid fluid

(Zabolotskaya et al.2, Kuznetsov3). Equation (6) also has a similar form to the model

equation that has been recently developed by Pierce4 using logical considerations only.

Equations (3) and (6) show that diffraction effects, nonlinear steepening, focusing and

caustic effects, and random induced fluctuations due to turbulence interact simultaneously

to determine the development of the shock wave in space and time and the pressure field

behind it. Turbulence tends to change the local speed of sound in the flow across the shock

and through this effect to reduce or to magnify the strength of the jump along the basic

shock (see Eq. (5)) or to distort the shock front. These changes may result in unsteady

motion of the shock front or in caustic vertices or in reflected shocks behind the incident

wave that can produce the variety of pressure signatures of sonic booms that are measured

in experimentsS-_0.
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FINITE DIFFERENCE SCHEME

A finite difference algorithm to solve the unsteady mixed-type elliptic-hyperbolic

flow around the shock wave has been developed. Murman and Cole 13 and Cole and Cookl2

techniques are used. A fully conservative scheme that is based on the conservative form of

Eq. (3c) is derived. In this way the difference equations also contain the shock relations

(Eqs. (4)).

Consider a uniform finite difference mesh (Ax*, Ay, Az, At*) in space and time, with

points (x*, y, z, t*) labeled by (i, j, k, n). The results can be easily generalized to a

variable mesh. Equation (3c) can be expressed in a conservative flux form for a box

centered on a mesh point (i, j, k). Therefore,

1

+lg) __ (2¢x, + 1 ) }(i,j,k,n) "_g (i,j,k,n-1)

+lg+f) Cx.+(7+l)¢x_./2 )

-((K-blgq-f) Cx,+(3'q-1)¢x_,/2)

--_-'Y ( i,j÷ll2,k,n)--(¢Y)(i,j-l/2,k,n)

(i+l/2,j,k,n)

(i-l/2,j,k,n)

1{ }_-0--_-Z ((1)z)(i,j,k+I/2,n) (i,j,k-l/2,n)
(z)

In Eq. (7), (¢y) and (¢z) are always calculated from a centered expression. However, the

approximation of (¢x.) strongly depends on whether locally, at a point, the flow is

subsonic, supersonic, sonic or if it is a shock point. Extending References 12 and 13

methodologies to our case and using Eq. (5), a centered approximation and a backward

expression are given for u*:
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1
u *c = K + f(j,k,n) + _ g(j,k,n)

(i_j,k_n)

+ (,0 + - *0- 1,j,k,n))

1
u *b = K + f(j,k,n) + _ g(j,k,n)

(i_j,k,n)

+ (¢(i,j,k,n)- - 2,j,k,n))

The local type of the flow is determined by the following table: 12,13

(s)

condition U *c

<0

>0

>0

<0

u*b

<0

>0

<0

>0

local flow is

subsonic

su personic

a sonic point

a shock point

Table 1. Algorithm for local type of flow

Equation (7) has been developed in a specific form according to the local type of the flow.

The variety of difference forms for locally subsonic, supersonic, sonic or shock points are

described in Rusak and Cole. 1

Starting from initial conditions that describe a given shock wave in the space for

t = 0 (or n = 0), and given temperature fluctuations f(y,z,t) and vorticity perturbations

g(y,z,t), the various difference forms can be applied for n = 1 at any mesh point according

to Table 1. They can be solved by an iterative point or line - or plane - relaxation

algorithm until at any point max i G (i,j,k,1) < 6 where 6 is a given small tolerance of

convergence. Then Cx* (i,j,k,1) can be calculated at any mesh point and the process is

restarted for the next time step. In this way the shock motion and pressure field behind it

can be integrated in space and time and the effect of various deterministic and random

fluctuations f and g can be studied.
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NUMERICAL RESULTS

The finite differencealgorithm to solveEq. (3b) hasbeenapplied to a variety of

two-dimensional and steadyshockwaveinteractions with vorticity and temperature
disturbances. Severalproblemshavebeenstudiedwherea nominal shockwavewith

K = 1.2 centered in the middle of the computational domain has been considered. The

following boundary conditions were used: Cx* = 0 along inlet surface, Cx* = - 1.0 along

outlet surface (which satisfy the basic shock jump relations) and Cy. = 0 along upper and
lower surfaces.

The first case considered vorticity fluctuations only where f = 0 and

f O 0 < y < 1/4
g(y)= 0 5sin4_(y-1/4) 1/4 < y < 3/4

3/4 < y < 1

(9)

Calculated pressure fields and profiles along various cross sections are shown in Figures 1

and 2. The bending of the shocks is in phase with the velocity perturbations (i.e., a

positive velocity perturbation produces a downstream deflection and visa versa) as was aJiso

described by Ribner14. Relative to nominal shock conditions (Figure 2a), the pressure

jump decreases noticeably (approximately 40 %) where the shock is bent upstream

(Figure 2b), and increases significantly (approximately 40%) where the shock is distorted

downstream (Figure 2d). The rippled wavefront leads to focusing and defocusing effects

behind the shock, where diffraction effects also become dominant.

In the second case only temperature disturbances have been considered where g = 0

and

0 0 <y< i/4
f(y)= 0 5sin16_-(y-1/4) 1/4<y_<3/4

3/4 <y<_ 1

(10)

Pressure fields and profiles along cross sections are presented in Figures 3 and 4. Again,

shock wave distortion results in significant local pressure jump reductions and increases
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(see Figures 4b and c). Basic effects involved are similar to those described in the first

case. Temperature or speed of sound disturbances strongly affect the basic shock as much

as vorticity disturbances.

The third case combined shock wave interaction with both vorticity and temperature

disturbances as are given by Eqs. (9) and (10), respectively. Calculated results are shown

in Figures 5 and 6. The shock front distortion is more pronounced and composed of the

basic two harmonics of the imposed disturbances. It is found that shock pressure jump at

certain locations is nearly eliminated due to the combined effects, resulting in a rounded

pressure profile (Figure 6b). At other locations along the shock front, the pressure jump is

significantly increased relative to the nominal shock jump with approximately 70 % (see

Figure 6c).

CONCLUSIONS

A new transonic small-disturbance model has been developed where a rescaling of the

axial coordinate and time has been considered to capture the basic nonlinear effects that

occur in the flow across the shock. This model results in two alternative approaches: (1) an

equation for solving a velocity potential function that is described by an extended version

of the classic small-disturbance equation for unsteady transonic aerodynamics_, and (2) a

nonlinear stochastic equation to describe the pressure field that is similar to the model

equation recently presented by Pierce4 using logical considerations only. This equation

also has an extended form of the classic equation that describes the propagation of

nonlinear sound beams with narrow angular spectrumS,3.

Both approaches show that diffraction effects, nonlinear steepening, focusing and

caustic effects and random induced turbulence fluctuations interact simultaneously to

determine the development of a shock wave in space and time and the pressure field behind

it. Turbulence fluctuations tend to change the local speed of sound in the flow across the

shock and through this effect to reduce or magnify the strength of the basic shock.

A finite difference scheme that uses Murman and Cole13 finite-difference techniques

for solving mixed-typed elliptic hyperbolic flows with shock waves has also been presented.

Numerical simulations of two-dimensional and steady shock wave interactions with various

deterministic vorticity and temperature disturbances have been shown. Results describe
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complicateshockwave structures andpeaksaswell asroundedlocal pressuresignatures
behind the distorted shockfronts. Similar signatureswere recordedin the experimentsof
somcboomsrunning through atmosphericturbulenceS-10.
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Figure 1. Pressure field for vorticity fluctuations (9).
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Figure 2. Pressure profiles along various cross sections for vorticity fluctuations (9).
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